我的账户 7×24小时客服热线:400-829-7929 语言:
热门产品: 人参皂苷Rh2,人参皂苷Rg3,胡萝卜苷, 木犀草苷
产品分类
在线咨询
联系电话:
销售:
400-829-7929(7*24小时)
028-82633860
028-82633397 
028-
82633165
技术服务和产品定制:
028-82633987
在线服务:  
沈帅 
文静  点击这里给我发消息
贺丹丹  
点击这里给我发消息
      
文献信息

Influence of tea polyphenol and bovine serum albumin on tea cream formation by multiple spectroscopy methods and molecular docking

期刊名:Food Chemistry
文献编号:
文献地址: https://www.sciencedirect.com/science/article/abs/pii/S0308814620312942
发表日期:15 December 2020
Abstract

The sensory qualities and shelf life of tea beverage strongly affected by tea cream that forms by the interaction of polyphenols and protein. The study aimed to investigate the effects of the interactions between tea polyphenols (TPs) and bovine serum albumin (BSA) on tea cream formation at different concentrations. The tea cream formation increased with TPs and BSA concentration increased. The optimal concentration (TPs: 800 mg/L, BSA: 40 mg/L), for high clarities and contents of phytochemicals, was selected by the technique for order preference by similarity to ideal solution (C = 0.7572). The interaction mechanism of TPs-BSA was investigated by fluorescence spectroscopy, UV–visible absorption spectroscopy, synchronous fluorescence spectroscopy, and molecular docking. TPs interacted with BSA via static quenching process, affecting tryptophan and tyrosine residue microenvironment of BSA. Ester catechins had more binding affinity than non-ester catechins. Hydrogen bonds were the main interaction forces of TPs-BSA.

… gallate (GCG), (−)epicatechin gallate (ECG), (−)epigallocatechin (EGC),
(−)epicatechin (EC), (+)catechin (C), glacial acetic acid and methanol were
of high-performance liquid chromatography (HPLC) grade and purchased from Biopurify